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1 MLE and MAP for Linear Models

In all of the following parts, write your answer as the solution to a norm mini-
mization problem, potentially with a regularization term. You do not need to
solve the optimization problem. Simplify any sums using matrix notation
for full credit.

Hint: Recall that the MAP estimator maximizes P(6|Y).

6= P(Y|0)P(6
arg max P(Y0) P(6)

The difference between MAP and MLE is the inclusion of a prior distribution
on @ in the objective function.

For the following problems assume you are given X € R"*? and y € R" as
your data.

(a) Let y = X0 + ¢ where € ~ N (0,X) for some positive definite, diagonal 2.
Write the MLE estimator of @ as the solution to a weighted least squares
problem, potentially with a regularization term.

Solution:

We are given:

Yy~ N(X6,3)
The likelihood of the data is:
y|@) = ! > L x0)Ts1(y— x0
p(yl@) = W exXp *§<!/ - ) (y — )

The log-likelihood is:

n 1 1 B
log p(y|6) = —5 log(2m) — S log [Z] — 5 (y — X0)'s ' (y—X6)



Equivalently, the optimization problem becomes:

2

0 = arg min(y — X0)' 7 (y — X0) = arg min HEil/Q(y - XO)H

OcR4 6cR4 2

This is a weighted least squares problem, where the weights are deter-
mined by X.

Extra: How to derive the solution! To find the MLE, we take the
gradient of the log-likelihood with respect to 8 and set it to zero:

Vologp(416) = Vo (5 (- X60)75 7y - X6) )

Using matrix calculus:
Vo [(y—X0)'S 7 y—X0)] = —2X"S7(y — X0)

Setting the gradient to zero:

X' M y—X0)=0= X"y =X"2'X0=0=(X"2'X) X nly

This is the closed-form solution.

Let y|@ ~ N(X0,%) for some positive definite, diagonal . Let 6 ~
N(0,\I;) for some XA > 0 be the prior on 8. Write the MAP estimator
of @ as the solution to a weighted least squares minimization problem,
potentially with a regularization term.

Solution:

We wish to find the MAP (maximum a posteriori) estimator:

6= P8 |y) = P(y| 6)P(8
arg max P(6 | y) = arg max Py | 6)F(6)

Since both the likelihood and prior are Gaussian, we can write them ex-
plicitly:

P(y|6) = Wexp (—;(y ~X0)'x 7 (y - XB))

__ 1 Lorin-ig) oL LT
Po) = OISV exp< 20 (M) 9) RN exp< 2)\0 0)

Taking the negative log of the posterior (dropping constants that don’t
depend on 0), the MAP estimator becomes:

1 1
= in |[=(y—X0)'S 1 (y—X —0'
0 = arg min {Q(y ) 27y - X0) + 5 a}



This is a regularized weighted least squares problem. To make this explicit,
observe that:

(v~ X6) T2y~ x0) = |52y - x0)||

So the optimization problem becomes:

A 2 1
- in ||S1/2(y — X0 H S
arg min (v ||, + 1ol

This is weighted ridge regression.

Let y = X0 + € where ¢; i Laplace(0,1). Recall that the pdf for
Laplace(y, b) is p(z) = 35 exp (—3|x — p|). Write down the MLE estima-
tor of @ as the solution to a norm minimization optimization problem.
Solution:

Since €; ~ Laplace(0, 1), each observation y; is distributed as:

1
y; ~ Laplace(z; 8,1) with density p(y; | 0) = 5 exp (—lyi — I:OD

Assuming the observations are independent, the likelihood function is:

n 1 1 n n
Py | 0) =] 5 exp (~lv: —]6]) = (2) exp (—Z lyi — w30>
i=1

=1

To find the maximum likelihood estimate, we maximize the log-likelihood,
or equivalently, minimize the negative log-likelihood:

n

. . .

6 = arg max log P(y | ) = arg min E 1 lyi —x; 6]
i—

This can be written more compactly using the ¢; norm:

0=a i - X6
rg min [ly [t

This is a least absolute deviations (LAD) estimator.

Let y|@ ~ N(X0,X) for some positive definite, diagonal X. Let 6; 3
Laplace(0, A) for some positive scalar A. Write the MAP estimator of 6 as
the solution to a weighted least squares minimization problem, potentially
with a regularization term.



2

Solution:

As before, the likelihood is Gaussian:

P(y | ) x oxp (—§<y X0 TRy - X0>)

The prior on each #; is independent Laplace:
d d
1 1 1 1
P(O) = — ——10;| | = [ = ——||0
0) =TT 5500 (~3101) = (55 ) e (-5 1011)

So, ignoring the constants which are not dependent on 6, the posterior is
proportional to:

Pl | 0)P(0) x oxp (50 - X6) "5y - X6) ~ 0]

Taking the negative log and dropping constants:

_ L Ty-1 1
0 = arg min [2(y—X0) b (y—X9)+A|0|I1]

To write this as a norm minimization problem, observe that:

(v X0)T2 My~ x0) = |52y - x0)||

Thus, the MAP estimator becomes:

2 9
6 — i HE*W — X0 H Zl0
arg min (y ) ot /\|| Il

This is weighted LASSO regression.

Maximum Likelihood Estimation

Let x1,29,...,2z, be independent samples from the following distribution:

P(x|60) =071 whered>1,2>1

Find the maximum likelihood estimator of 6.

Solution:

n

n

) o _ —0—1 _ —0-1

L(xl,zg,...,L,L|9)—H01i —Q”Hxi
i=1 =1



In L(xy,29,...,2, |0) =nlnd — (6 + 1)Zlnm

i=1

SInL n
50 :5—£:lellmi20

n
emlo = n
S Ina

Since 6 > 1, any 0,10 < 1 has a zero probability of generating any data, so

our best estimate of § when 0y, < 1 is 0,10 = 1. Therefore, the final answer is
p— . n
Omle = max (1, DTN )
n

However, we will still accept 01 = ST T
i=1 T

3 Linear models and linear transformation

In this exercise we are going to see how the solution to the least squares problem
changes when a linear transformation is applied to the input features X. Recall
that in linear regression given X € R™*? and y € R™ we aim to find the set of
coefficients ,3 € R? that minimizes:

n

d
8= argming||y — X8| = Z(yz — ZXiij)z (1)
j=1

i=1
For simplicity, we can define g = X ﬁ Recall that the solution is given by:
B=(X"X)"'X"y (2)

For all the exercises, assume that X is full rank and therefore X7TX is
invertible and also n > d. We would like to linearly transform our features, so
that we obtain a new set of features X’ € R"*" If our the matrix defining
our linear transformation is A € RdXd/, the transformed features X are simply
given by:

X' =XA (3)

Now we would like to find the set of coefficients B’ that minimize:
B’ = argming, |ly — X'B'|[3 (4)
a) Write down the solution to 4, that is, what is the optimal B in terms of

X’ and y.
Solution: The problem in 4 is the same as 1. Therefore, the solution is
analogous, substituing X by X’:

Bl _ (X’TX/)le’Ty

We will now try to relate this solution to 2.



b) Substitute X’ = XA to the expression found for B’. You will not be
able to simply much. Hint: Remember that given two matrices A, B,
(AB)T = BT AT,

Solution: If we substitute:

B = (ATXTXA) AT Xy

From now on, assume that d = d’ and that A is full rank (thus invert-
ible). This assumption is equivalent to saying that we transform the data
”without loss of information”.

¢) Show that B’ = A1 Hint: The same property as before also holds for
the inverse (AB)™! = B~1A~! if A and B are full rank and squared.
Solution: Following the hint (ABC)™t = C71(AB)™! = C~!B71A~L.
We apply this to the previous expression:

(ATXTXA)—IATXTy _ A—I(XTX)—l(AT)—lATXTy _ A—l(XTX)—lXTy

Using 2:

d) Show that the predictions of the model do not change if we fitted with the
transformed data X'.

Solution: The predictions of the model fitted with the original data are
9 = X 3. The predictions of the model fitted with X’ are bmy’ = X'3’

We substitute from the previous exercise and X' = X A:

§=XB =(XAA'B=XB=7

e) In part ¢, we have assumed d’ = d. What would happen to the solution

to the least squares problem in the case d’ > d? Hint: rank(AB) <
min(rank(A), rank(B))
Solution: In the case d’ > d, the matrix X’ would be at most of rank(d)
while having d’ columns. That is, one of the could be expressed as a linear
combination of the rest. This is a case of multicollinearity (see Notes 6)
and the least squares problem would not have a unique solution.

f) Finally, what would you intuitively think happens in the case d’ < d. Try
to reason in terms of model performance when comparing the model fitted
with X and XA (with d’ < d).

Solution: Applying a linear transformation resulting in a lower amount
of features can be seen as a "loss of information”. We would expect the



solution to the problem with X’ to have a higher mean squared error than
the one with X. (In the best case, if we lose information that is not useful
to predict y we might get the same MSE than with X).

4 Statistical Properties of the Uniform Distri-
bution

Consider a continuous uniform distribution defined on the interval [a,b] with
length L =b — a.

1. Derive the probability density function (PDF) of this uniform distribution.

For a continuous uniform distribution on [a, b], the PDF is given by:

fla) = {L for « € [a,b]

otherwise

2. Calculate the expectation value (mean) of this distribution and express it
as a function of L and a.

b 2 b
1 1 q

(b+a)b—a) (a+b) .
2L 2

3. Calculate the variance of this distribution and express it as a function of

L only.
b 370 3 3
1 1 |z b° —a
o0_ [ 2 1, 1 _
: atb 2 2
Since E[X] = 5 then Var(X) = E[X“] — (E[X])
_(b—a)? L?
12 12



5 James-Stein estimator

Problem 1: Setup the Multivariate Normal Model
Suppose X = (X1, Xo,...,X,) where each X; ~ N(6;,0?) independently.

a) What is the MLE for 8 = (61,...,6,)? (Hint: Note that each variable
X; has a different mean.)

b) Show that the risk (mean squared error) of the MLE, R(6,6) = E[||§ —
0|]?] = po?, where 8 is the MLE of 6.
Problem 2: Introduce the James-Stein Estimator

Define a James-Stein estimator:

A —2)0?
eJS _ (1 7 (p ) X,
X[

where || X[|? = >, X?. Compute the condition that p should satisfy so
that the shrinkage factor is positive?

Problem 3: Classical vs. Shrinkage Estimators

a) Mention the trade-off we make in terms of bias and variance between the
JS estimator and the MLE.

b) Explain the importance of the James-Stein estimator in practical applica-
tions. Where might we expect it to outperform traditional methods, and
why?

Solution

la. We have X; ~ N (6;,0%). Therefore, the joint likelihood is,

Lo =11 ¢2;7“’p<‘ )

Taking logs,
og(L(0)) 5 og(2mo*) — 952 E (Xi —0:)

i=1

The log likelihood is maximized when Y 7_ (X; — 6;)? is minimized. This hap-
pens when 6; = X; for all . Therefore the MLE is,

6=X



1b. Since X ~ N(0,02I), the MSE is:

R(9,6) =E[|X - 6]°] = ZE[(X,: = 0;)] = po.

2
2. The shrinkage factor 1 — (’T‘;fﬂ;’ is positive when p > 2 and || X||* > 0.

3a. The JS estimator introduces some bias, but reduces the overall variance in
high-dimensional data.

3b. The JS estimator is useful when estimating many related parameters, such

as gene expression levels or image intensities, where pooling or shrinkage helps
control overfitting and noise.

6 Pen-and-Paper PCA Exercise

Exercise

Consider the following dataset of four observations in two dimensions:

1. Compute the sample means Z and §.
2. Center the data by subtracting (Z,¥) from each point.
3. Form the sample covariance matrix

4
1 T; — T _ _
SR 3 ) [

i=1

4. Solve for the eigenvalues A1, Ay of S.
5. Find corresponding (unit) eigenvectors v, v(2),

6. Compute the proportion of total variance explained by each principal com-
ponent.

7. Project each centered point onto the first principal component.

8. Sketch the centered data, overlay the PC axes, and draw the ellipse with
semi-axes /A1 and v/ As.



Solution

(1)

Sample means:

1+2+3+4
—=

2414443

2.5.
4

z= 25, §=

Centered data:

(2; — Z,y; — ) = {(~1.5,—0.5), (=0.5,—1.5), (0.5,1.5), (1.5,0.5)}.

Covariance matrix:

=55 (i) e nnen=5( 5= (1 o).

a b

Eigenvalues of (b o

) are \=a=+b. Here a =5/3,b=1, so

5 8
)\1=*+1=§, Ay =

1_2
3 )

5
3
Eigenvectors solve (S — AI)v = 0:

M=5:(53-5u+11=0 = —v1+v2=0 = vP o (1,1).

)\2:%1 (5/3—%)v1+1'vz=0 = v +v=0= v (1,-1).

izine ol (CO I 2= 1L —
Normalizing gives v*/ = —5(1,1), v'¥ = \/5(1, 1).

Total variance = A\ + XAy = % + % = ?. Proportions:

/\1 8/3 /\2
AL+A 10/3 ©10/3

Projection onto PC1:
T . oo L . .
score; 1 = v @rﬂmw—y)=;6K@—xy+@r—m]

For obs. 1: L\/%_Oﬁ) = —% ~ —1.414.

10



