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1 MLE and MAP for Linear Models

In all of the following parts, write your answer as the solution to a norm mini-
mization problem, potentially with a regularization term. You do not need to
solve the optimization problem. Simplify any sums using matrix notation
for full credit.

Hint: Recall that the MAP estimator maximizes P (θ|Y ).

θ̂ = arg max
θ∈Rd

P (Y |θ)P (θ)

The difference between MAP and MLE is the inclusion of a prior distribution
on θ in the objective function.

For the following problems assume you are given X ∈ Rn×d and y ∈ Rn as
your data.

(a) Let y = Xθ + ϵ where ϵ ∼ N (0,Σ) for some positive definite, diagonal Σ.
Write the MLE estimator of θ as the solution to a weighted least squares
problem, potentially with a regularization term.

Solution:

We are given:
y ∼ N (Xθ,Σ)

The likelihood of the data is:

p(y|θ) = 1

(2π)n/2|Σ|1/2
exp

(
−1

2
(y −Xθ)⊤Σ−1(y −Xθ)

)
The log-likelihood is:

log p(y|θ) = −n

2
log(2π)− 1

2
log |Σ| − 1

2
(y −Xθ)⊤Σ−1(y −Xθ)
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Equivalently, the optimization problem becomes:

θ̂ = arg min
θ∈Rd

(y −Xθ)⊤Σ−1(y −Xθ) = arg min
θ∈Rd

∥∥∥Σ−1/2(y −Xθ)
∥∥∥2
2

This is a weighted least squares problem, where the weights are deter-
mined by Σ.

Extra: How to derive the solution! To find the MLE, we take the
gradient of the log-likelihood with respect to θ and set it to zero:

∇θ log p(y|θ) = ∇θ

(
−1

2
(y −Xθ)⊤Σ−1(y −Xθ)

)
Using matrix calculus:

∇θ

[
(y −Xθ)⊤Σ−1(y −Xθ)

]
= −2X⊤Σ−1(y −Xθ)

Setting the gradient to zero:

X⊤Σ−1(y−Xθ) = 0 ⇒ X⊤Σ−1y = X⊤Σ−1Xθ ⇒ θ̂ = (X⊤Σ−1X)−1X⊤Σ−1y

This is the closed-form solution.

(b) Let y|θ ∼ N (Xθ,Σ) for some positive definite, diagonal Σ. Let θ ∼
N (0, λId) for some λ > 0 be the prior on θ. Write the MAP estimator
of θ as the solution to a weighted least squares minimization problem,
potentially with a regularization term.

Solution:

We wish to find the MAP (maximum a posteriori) estimator:

θ̂ = arg max
θ∈Rd

P (θ | y) = arg max
θ∈Rd

P (y | θ)P (θ)

Since both the likelihood and prior are Gaussian, we can write them ex-
plicitly:

P (y | θ) = 1

(2π)n/2|Σ|1/2
exp

(
−1

2
(y −Xθ)⊤Σ−1(y −Xθ)

)
P (θ) =

1

(2πλ)d/2
exp

(
−1

2
θ⊤(λI)−1θ

)
=

1

(2πλ)d/2
exp

(
− 1

2λ
θ⊤θ

)

Taking the negative log of the posterior (dropping constants that don’t
depend on θ), the MAP estimator becomes:

θ̂ = arg min
θ∈Rd

[
1

2
(y −Xθ)⊤Σ−1(y −Xθ) +

1

2λ
θ⊤θ

]
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This is a regularized weighted least squares problem. To make this explicit,
observe that:

(y −Xθ)⊤Σ−1(y −Xθ) =
∥∥∥Σ−1/2(y −Xθ)

∥∥∥2
2

So the optimization problem becomes:

θ̂ = arg min
θ∈Rd

∥∥∥Σ−1/2(y −Xθ)
∥∥∥2
2
+

1

λ
∥θ∥22

This is weighted ridge regression.

(c) Let y = Xθ + ϵ where ϵi
i.i.d.∼ Laplace(0, 1). Recall that the pdf for

Laplace(µ, b) is p(x) = 1
2b exp

(
− 1

b |x− µ|
)
. Write down the MLE estima-

tor of θ as the solution to a norm minimization optimization problem.

Solution:

Since ϵi ∼ Laplace(0, 1), each observation yi is distributed as:

yi ∼ Laplace(x⊤
i θ, 1) with density p(yi | θ) =

1

2
exp

(
−|yi − x⊤

i θ|
)

Assuming the observations are independent, the likelihood function is:

P (y | θ) =
n∏

i=1

1

2
exp

(
−|yi − x⊤

i θ|
)
=

(
1

2

)n

exp

(
−

n∑
i=1

|yi − x⊤
i θ|

)

To find the maximum likelihood estimate, we maximize the log-likelihood,
or equivalently, minimize the negative log-likelihood:

θ̂ = argmax
θ

logP (y | θ) = argmin
θ

n∑
i=1

|yi − x⊤
i θ|

This can be written more compactly using the ℓ1 norm:

θ̂ = arg min
θ∈Rd

∥y −Xθ∥1

This is a least absolute deviations (LAD) estimator.

(d) Let y|θ ∼ N (Xθ,Σ) for some positive definite, diagonal Σ. Let θi
i.i.d.∼

Laplace(0, λ) for some positive scalar λ. Write the MAP estimator of θ as
the solution to a weighted least squares minimization problem, potentially
with a regularization term.
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Solution:

As before, the likelihood is Gaussian:

P (y | θ) ∝ exp

(
−1

2
(y −Xθ)⊤Σ−1(y −Xθ)

)

The prior on each θi is independent Laplace:

P (θ) =

d∏
i=1

1

2λ
exp

(
− 1

λ
|θi|
)

=

(
1

2λ

)d

exp

(
− 1

λ
∥θ∥1

)

So, ignoring the constants which are not dependent on θ, the posterior is
proportional to:

P (y | θ)P (θ) ∝ exp

(
−1

2
(y −Xθ)⊤Σ−1(y −Xθ)− 1

λ
∥θ∥1

)

Taking the negative log and dropping constants:

θ̂ = arg min
θ∈Rd

[
1

2
(y −Xθ)⊤Σ−1(y −Xθ) +

1

λ
∥θ∥1

]

To write this as a norm minimization problem, observe that:

(y −Xθ)⊤Σ−1(y −Xθ) =
∥∥∥Σ−1/2(y −Xθ)

∥∥∥2
2

Thus, the MAP estimator becomes:

θ̂ = arg min
θ∈Rd

∥∥∥Σ−1/2(y −Xθ)
∥∥∥2
2
+

2

λ
∥θ∥1

This is weighted LASSO regression.

2 Maximum Likelihood Estimation

Let x1, x2, . . . , xn be independent samples from the following distribution:

P (x | θ) = θx−θ−1 where θ > 1, x ≥ 1

Find the maximum likelihood estimator of θ.

Solution:

L(x1, x2, . . . , xn | θ) =
n∏

i=1

θx−θ−1
i = θn

n∏
i=1

x−θ−1
i
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lnL(x1, x2, . . . , xn | θ) = n ln θ − (θ + 1)

n∑
i=1

lnxi

δ lnL

δθ
=

n

θ
−

n∑
i=1

lnxi = 0

θmle =
n∑n

i=1 lnxi

Since θ > 1, any θmle ≤ 1 has a zero probability of generating any data, so
our best estimate of θ when θmle ≤ 1 is θmle = 1. Therefore, the final answer is

θmle = max
(
1, n∑n

i=1 ln xi

)
.

However, we will still accept θmle =
n∑n

i=1 ln xi
.

3 Linear models and linear transformation

In this exercise we are going to see how the solution to the least squares problem
changes when a linear transformation is applied to the input features X. Recall
that in linear regression given X ∈ Rn×d and y ∈ Rn we aim to find the set of
coefficients β̂ ∈ Rd that minimizes:

β̂ = argminβ̂||y −Xβ̂||22 =

n∑
i=1

(yi −
d∑

j=1

Xijβj)
2 (1)

For simplicity, we can define ŷ = Xβ̂. Recall that the solution is given by:

β̂ = (XTX)−1XTy (2)

For all the exercises, assume that X is full rank and therefore XTX is
invertible and also n > d. We would like to linearly transform our features, so
that we obtain a new set of features X ′ ∈ Rn×d′

. If our the matrix defining
our linear transformation is A ∈ Rd×d′

, the transformed features X are simply
given by:

X ′ = XA (3)

Now we would like to find the set of coefficients β̂′ that minimize:

β̂′ = argminβ̂′ ||y −X ′β̂′||22 (4)

a) Write down the solution to 4, that is, what is the optimal β̂′ in terms of
X ′ and y.

Solution: The problem in 4 is the same as 1. Therefore, the solution is
analogous, substituing X by X ′:

β̂′ = (X
′TX ′)−1X

′Ty

We will now try to relate this solution to 2.
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b) Substitute X ′ = XA to the expression found for β̂′. You will not be
able to simply much. Hint: Remember that given two matrices A,B,
(AB)T = BTAT .

Solution: If we substitute:

ˆ̂
β′ = (ATXTXA)−1ATXTy

From now on, assume that d = d′ and that A is full rank (thus invert-
ible). This assumption is equivalent to saying that we transform the data
”without loss of information”.

c) Show that β̂′ = A−1β̂ Hint: The same property as before also holds for
the inverse (AB)−1 = B−1A−1 if A and B are full rank and squared.

Solution: Following the hint (ABC)−1 = C−1(AB)−1 = C−1B−1A−1.
We apply this to the previous expression:

(ATXTXA)−1ATXTy = A−1(XTX)−1(AT )−1ATXTy = A−1(XTX)−1XTy

Using 2:
β̂′ = A−1β̂

d) Show that the predictions of the model do not change if we fitted with the
transformed data X ′.

Solution: The predictions of the model fitted with the original data are
ŷ = Xβ̂. The predictions of the model fitted with X ′ are bmŷ′ = X ′β̂′

We substitute from the previous exercise and X ′ = XA:

ŷ′ = X ′β̂′ = (XA)A−1β̂ = Xβ̂ = ŷ

e) In part c, we have assumed d′ = d. What would happen to the solution
to the least squares problem in the case d′ > d? Hint: rank(AB) ≤
min(rank(A), rank(B))

Solution: In the case d′ > d, the matrix X ′ would be at most of rank(d)
while having d′ columns. That is, one of the could be expressed as a linear
combination of the rest. This is a case of multicollinearity (see Notes 6)
and the least squares problem would not have a unique solution.

f) Finally, what would you intuitively think happens in the case d′ < d. Try
to reason in terms of model performance when comparing the model fitted
with X and XA (with d′ < d).

Solution: Applying a linear transformation resulting in a lower amount
of features can be seen as a ”loss of information”. We would expect the
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solution to the problem with X ′ to have a higher mean squared error than
the one with X. (In the best case, if we lose information that is not useful
to predict y we might get the same MSE than with X).

4 Statistical Properties of the Uniform Distri-
bution

Consider a continuous uniform distribution defined on the interval [a, b] with
length L = b− a.

1. Derive the probability density function (PDF) of this uniform distribution.

For a continuous uniform distribution on [a, b], the PDF is given by:

f(x) =

{
1
L for x ∈ [a, b]

0 otherwise

2. Calculate the expectation value (mean) of this distribution and express it
as a function of L and a.

E[X] =

∫ b

a

x · 1
L
dx =

1

L
·
[
x2

2

]b
a

=
1

L
·
(
b2 − a2

2

)
=

(b+ a)(b− a)

2L
=

(a+ b)

2
= a+

L

2

3. Calculate the variance of this distribution and express it as a function of
L only.

E[X2] =

∫ b

a

x2 · 1
L
dx =

1

L
·
[
x3

3

]b
a

=
b3 − a3

3L

Since E[X] =
a+ b

2
, then Var(X) = E[X2]− (E[X])2

=
(b− a)2

12
=

L2

12
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5 James-Stein estimator

Problem 1: Setup the Multivariate Normal Model

Suppose X = (X1, X2, . . . , Xp) where each Xi ∼ N(θi, σ
2) independently.

a) What is the MLE for θ = (θ1, . . . , θp)? (Hint: Note that each variable
Xi has a different mean.)

b) Show that the risk (mean squared error) of the MLE, R(θ̂,θ) = E[∥θ̂ −
θ∥2] = pσ2, where θ̂ is the MLE of θ.

Problem 2: Introduce the James-Stein Estimator

Define a James-Stein estimator:

θ̂JS =

(
1− (p− 2)σ2

∥X∥2

)
X,

where ∥X∥2 =
∑p

i=1 X
2
i . Compute the condition that p should satisfy so

that the shrinkage factor is positive?

Problem 3: Classical vs. Shrinkage Estimators

a) Mention the trade-off we make in terms of bias and variance between the
JS estimator and the MLE.

b) Explain the importance of the James-Stein estimator in practical applica-
tions. Where might we expect it to outperform traditional methods, and
why?

Solution

1a. We have Xi ∼ N (θi, σ
2). Therefore, the joint likelihood is,

L(θ) =

p∏
i=1

1√
2πσ2

exp(− (Xi − θi)
2

2σ2
)

Taking logs,

log(L(θ)) = −p

2
log(2πσ2)− 1

2σ2

p∑
i=1

(Xi − θi)
2

The log likelihood is maximized when
∑p

i=1(Xi − θi)
2 is minimized. This hap-

pens when θi = Xi for all i. Therefore the MLE is,

θ̂ = X
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1b. Since X ∼ N(θ, σ2I), the MSE is:

R(θ̂,θ) = E[∥X − θ∥2] =
p∑

i=1

E[(Xi − θi)
2] = pσ2.

2. The shrinkage factor 1− (p−2)σ2

∥X∥2 is positive when p > 2 and ∥X∥2 > 0.

3a. The JS estimator introduces some bias, but reduces the overall variance in
high-dimensional data.

3b. The JS estimator is useful when estimating many related parameters, such
as gene expression levels or image intensities, where pooling or shrinkage helps
control overfitting and noise.

6 Pen-and-Paper PCA Exercise

Exercise

Consider the following dataset of four observations in two dimensions:

Obs. x y
1 1 2
2 2 1
3 3 4
4 4 3

1. Compute the sample means x̄ and ȳ.

2. Center the data by subtracting (x̄, ȳ) from each point.

3. Form the sample covariance matrix

S =
1

n− 1

4∑
i=1

(
xi − x̄
yi − ȳ

)
(xi − x̄, yi − ȳ).

4. Solve for the eigenvalues λ1, λ2 of S.

5. Find corresponding (unit) eigenvectors v(1), v(2).

6. Compute the proportion of total variance explained by each principal com-
ponent.

7. Project each centered point onto the first principal component.

8. Sketch the centered data, overlay the PC axes, and draw the ellipse with
semi-axes

√
λ1 and

√
λ2.
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Solution

(1) Sample means:

x̄ =
1 + 2 + 3 + 4

4
= 2.5, ȳ =

2 + 1 + 4 + 3

4
= 2.5.

(2) Centered data:

(xi − x̄, yi − ȳ) = {(−1.5,−0.5), (−0.5,−1.5), (0.5, 1.5), (1.5, 0.5)}.

(3) Covariance matrix:

S =
1

3

4∑
i=1

(
xi − x̄
yi − ȳ

)
(xi − x̄, yi − ȳ) =

1

3

(
5 3
3 5

)
=

(
5/3 1
1 5/3

)
.

(4) Eigenvalues of

(
a b
b a

)
are λ = a± b. Here a = 5/3, b = 1, so

λ1 =
5

3
+ 1 =

8

3
, λ2 =

5

3
− 1 =

2

3
.

(5) Eigenvectors solve (S − λI)v = 0:

λ1 = 8
3 : (5/3− 8

3 )v1 + 1 · v2 = 0 =⇒ −v1 + v2 = 0 ⇒ v(1) ∝ (1, 1).

λ2 = 2
3 : (5/3− 2

3 )v1 + 1 · v2 = 0 =⇒ v1 + v2 = 0 ⇒ v(2) ∝ (1,−1).

Normalizing gives v(1) = 1√
2
(1, 1), v(2) = 1√

2
(1,−1).

(6) Total variance = λ1 + λ2 = 8
3 + 2

3 = 10
3 . Proportions:

λ1

λ1 + λ2
=

8/3

10/3
= 0.80,

λ2

10/3
= 0.20.

(7) Projection onto PC1:

scorei,1 = v(1)T (xi − x̄, yi − ȳ) =
1√
2

[
(xi − x̄) + (yi − ȳ)

]
.

For obs. 1: −1.5+(−0.5)√
2

= − 2√
2
≈ −1.414.
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